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A b s t r a c t

Locally, the stress-energy of quantized matter can become arbitrarily neg-
ative in a wide class of quantunr  states, the]eby  violating the clasical
positive-energy conditions of General Relativity without bound. Since
without such constraints the theory would have no predictive power, un-
covering what nonlocal constraints, if any, quantum field theory imposes
on the renormalized  stress-energy tensor is of central importance for semi-
classical gravity. One such nonlocal constraint, the averaged nuli en-
ergy conditicm (AN EC---the condition that the null-null component of the
stress-energy tensor integrated along a complete null g,codesic is nonneg-
ative  in every quantum state) bass been recently shown to hold for linear
quantum fields in a large elms of spacetimes.  Nevertheless, it is eassy
to show by using a simple scaling argument that ANEC  as stated cannot
hold generically in curved four-dimensional spacetime,  and this scaling ar-
gument has been widely interpreted as a death-blow for averaged energy
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conditions in quantum field theory. In this not{ I propose a siniple  genera-
lization of ANt3C, in which the right-hand-side of the ANIX inequality
is replaced by a finite (but in general negative) state-independent lower
bound. As long as attention is focused on asymptotically well-behaved
space times, this generalized version of ANEC  is safe from the threat of
the scaling argument, and thus stands a cbancc  of being generally valid in
four-dimensional curved spacetirne.  I argue that when generalized ANFX
holds, it hrM implications for the non-negativity of total energy  and for
singularity theorems similar to the implications of AN EC. III particular, I
show that if generalized ANEC is satisfied in static traversable wormhole
spacetimes (which is tikely but remains to be shown), then macroscopic
wormholes  (but not necessarily microscopic, }’lanck-siz,c wormboles)  arc
ruled out by quantum field theory.



‘1’hc Illost striking aspect of the violatio~l  of positive-crlcr,gy conditions

by quantum st,rcss-encr-gy  tensors is the unbound[:d  extent of t}le violatioli.  For

cxaltlp]c,  even for a Klein-Gordon scalar field in flat, hfinkowski space, the
regularized (nor] nal-ordmcd)  expectation value (wl:7~o(z):lw)  at any point r is
unbounded from below as a functional of the quantum state w, Iurthcrmorc,

the volume  integral of (w l:’l~o(z):lw)  over any fixe~l, spacelike  3-box of finite size

is also unbounded from below as a functional of w (and a sitnilar  result holds for

the spacctilnc-volume integral over a conlpact  4- box; see Sect. 1 and Ref. []] of
[1] for niore  details). Given this tendency of the regularized ex~~ectation value

(~l~~,(~)lti) to become unbourldcdly  ncg,ativc,  al,y condition that sets a lower

bound on nonlocal  averages of (~l~~b(~)lti)  would be a significant co!lstraint  on
tllc quallturn  stress-energy tensor.

in this note I propose the following constraint as a gctleralizatiou of t}le

averaged null energy condition (A NEC; see [2] a~ld [1] for a discllssion of ANEC
and its brief history): Let (w [7&~lw)  dcr~ote thr (renorrr]alizcd ) stress-energy
tcllsor  of a quantum field on a curved spacetil[te  (?M, g), arid let y c M be

a colnp]ete  null geodesic, For k“ a given (paralll:l-propagat,  ed) tarlgent  vector
along -y, let mc introduce the following quantity ~~(k):

J
~?(k) ~ i n f  (LL17~blW)  kakb d v (1)

w 7

] will say t}lat (Tab) satisfies  generalized AN~c along ~ i f  ,f?(~) >  ‘~. ~]crc

the infimum  is takcrl over all IIadarnard  states w of the quantu[l)  field, and t}le

int,cgral alorlg y is with respect to the afflne parameter v whicl] corresponds to
the tangent vector  ka (i.e., d-y”/dv = k“). Properly interpreted, the quantity

/3 is a l-fornl,  whose cc)nt,raction with the tang(,nt  vector k“ is given by the
right hand side of Eq. (1). More precisely, ~ is an element of the quotient space

~~*~/~P, where p is a point on 7, IVp c 7~*~  is the subspace  of all l-forms
o E 7~,*Xf  which anni}li]ate the tangent vector y, [rY(-y*) = O], arid /3 is parallel
t ransported a long 7 so that it does not matter at which p c 7 the quantity

/3(7.  ) is evaluated.

‘1’hc usual ANEC along 7  i s  recovered  k,y se t t ing  ,8(Y, ) > 0. If the

iutegrand  on the right hand side of Eq. (1) is non-integrable for some IIadarnard
states w, a more precise version of generalized AN EC needs to bc employed just

like the more precise version of AN13C  discussed in Sect. 2 of [2]. Namely, let

C(Z) bc a compact-supported real-valued functioIl on R whose Fc)urier  transform
t(s) is such that for some 6 > 0 the function (1 + S2)1+J I?(s)l  is bounded [which

implies that C(Z) is C1]. Generalized ANEC holds along a cornplcte  null geodesic
7 if for every suclI Veigl,ting  function C(Z) the l-form /3. along 7 defined by

(2)

satisfies @c(k) > –co.

strengthened) to ANIIX

Generalized ANEC recluces (or, more accurately, is
when one imposes the stronger condit ion: /3C(y* ) ~ O
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for all weighting functions c(z)  as above. Note that generalized ANII~C  can IJc

forlllulatcd  equivalently in the (perhaps more sensible) forlll of an illcquality:

]Iar)lcly,  for all c(2) chosen as above,

(3)

wllcrc tile cx~)ression  /?C(k) on the right hand sidf  is a st;~tc-irlclt~~)cllde~lt lower

hound for the (weighted) ANEC integral on the left hand side. In gcrleral  (when

gcncralimd  ANEC  holds), this lower bound (i.e., the precise exl)ression of the
l-form PC) will depend only on the geolnetry  of (he spacetiule  (Nf, g) [as well,

of course, as on tbc nu]l geodesic v and the weighting function c(x)]. If tbc
infimum  over u in Eq. (’2) is achieved [for all c(z)] by sonle lIadamard state WO,

the]] Eq, (3) earl be written in the form of a cliflcrcnce incqualit~’  (see [3] and [I]
olI difference inequalities):

l~n i~f
- 1

(  (~l~i~l~)  - 
(~Ol~~blWO)  ) kakb [c’(v/A)]’  dV > (1 vu (4)

-1

Convr?rsely, if (u 17~h(~)[~)  satisfies a difference inequality

SUCh  that the expression Dabkakb is integrable altmg T, then generalized  AN~C

[Ilq. (3)] holds with P,(k) z [c(O)]’ J_? Dabkakb dt.

Ilcfore 1 discuss the physical significance of generalized AN IX, let me

explain why this modifiecl  version of ANIJC  has n better chance of holding gen-

erally in curved four-dimensional spacetime  thau the original version. Recall
the scalilig  argument given in the note added i], proof to [2] aIId discussed in

more detail recently in [4]: Restrict attention, for simplicity, to a massless  Klein-
Gordon scalar quantum field ~. Given an arbitrary four- diIIlensional spacetirnc

(M, g) in which @J satisfies ANEC along a null geodesic ~, the scaling argument
asks us to consider the new spacetirnc  (M, ~zg), where R > 0 is a constant

scale factor (in particular, in this new spacetimc  the curve -y c M is still a null

geodesic with the same ailne parameter v). ‘To every IIadamard  state u of O

with two-point function pu(z)  z’) on the original spacetirne,  there! corresponds a

lIadanlard state w on the scaled spacetime with two-point functiorl ~-2pw(x,  x’).
yl’be masslcss  Klein-Gordon equation is invariant under scale transformations
(whereas the massive Klein-Gordon equation is scale-invaria],t  upto a reseal-

ing of the nmss); therefore the function pW(x, i’) remains a hi-solution of the

masslcss  Klein-Gordon equation under the scaling g + tc2g. ‘1’hc overall scale
factor ~ ‘2 is introduced to keep pw in }Iadamard  form in the new spacetime.]

Normally, tbcn,  one would expect the regularized expectation value (LIJl~ab  Iw) to
simply scale as K-4 (because its definition involves differe~ltiating the two-point

function twice with respect to locally inertial coordinates). JIc)wevcr, according

to the general re~iormalizatiorl  prescription for ph, before the di(lercntiations  and
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the ]il]lit x + $’ arc carr ied o u t  to evaluate  (~lg~,h($)[~),  a ]Oca]ly Constrllctcd
llada~llirrd dislributio~i  PO(Z,  z’) IICCdS  to bC slll~tr’~cte~  fr~lll PUI(J’  x’) (o ol)-
taiil  t}le regularized two- point function. It turns out that t IIis local IIadaltlard

distribution p. does not, scale in the sa[ne silnple  way as IIU ulldcr the scal-
ing g + ~zg of the metric, and this anolnalous scaling be}lavior c,f po(.r, r’)

cuds up contributil)g  two additional terlns  (apart from tile simply scaled term
N-4(WlY~61W)) to (he value of (Ldl~~blW)  in the scaled spacctinle  ([5]).  ‘1’hcse M-
ditioual  tcrlns  arc of the form a K ‘ 4 lu~  ‘l)}~aIj -1 bx–~ln ~ ‘Z)}lah,  Where a, b

arc dilncnsion]ess  (in Planck  units)  constants which have known universal values
for each fixed quantuln  field, and ‘1 ‘}l~b and ‘z)~]ab denote  t]lc conserved ]ocal
curvatllr-c  terllls

rcspcctivcly.  I’he precise numerical values of ttle constants a and b depend

o])ly on the spin and internal structure of the spe(-ific  quantutn  field considered.
[Note t]lat although  this scaling  behavior of (w l~~b[~) is closely related  to the

famous ambiguity in the renormalization prescription, the Collstallts  a and b
are determined independently of this  alnbiguity. For TIlost fields of illtcrest

their  values can t)c found in the literature (see [5], p. 1450 for a table  of these

constants for various quantum fields; notice, however, that, a and b ill that table
arc given with respect to different conserved curvature terms which arc linear

Cornbinatious  of ‘l)]~db and ‘2)}$ab).  ] wi]l not need to specify the exact values
of a and b in this note: it will sufflcc to know only the fact that in general
these arc constants wit}l absolute magnitudes of order 10 -4 (ii] l’lanck units).]

1( is now clear that if the curvature of the original spacctil)lc  is srrfhciently

general So that the integrals f? ‘l)}~abkakb dv and J“ ‘z)~~~b~’akb  dv are non-
vanishiug,  then by choosing the scale factor ~ appropriately (note that the

logarithm ]n ~ has indefinite sign) it should br possible to firld a spacetirnc
(M, ~2g)  in which AN1;C is violated along ~. Notice, however, the crucial

feature of the ANEC-violating  term (proportional to K-4 In ~) disclosed by this
scaling argurncut:  it is independent of the quallturn  state w. ‘1’hcrcfore, if M

a functional of the quauturn  state the ANEC in{cgral along -y is bounded from

below in the original spacetirne (as would be the case if A NEC hc)lds there), with
the greatest lower bounct given by a l-form ~ as in Eq. ( 1), t}lerl tllc only effect

of the scalirrg  g -+ ~2g will be to shift this lower bound @ dowrl (or up) by an
amount proportional to R ‘ 4 in tc and the integrals of ‘l)}~abk”kb and ‘2)~~abk”kb

along T. When the spacetirne  (M, g) is asymptotically wc]l-behaved (so that

its Ricci curvature falls off appropriately at null infinity), these integrals are
finite. Consequently, if generalized A NIX;  holds along y in the asymptotically
flat  (more precisely, asymptotically empty)  spa’-ctjrne (~, g ), t~lc~l it ~lo~ds Jr)
the scaled .spacetime (Xl, ~2g)  for ar]y K >0.

in the remainder of this note I will arglle that generalized ANEC, al-
though  a much weaker constraint tha]l the usual ANIC, has physical signifi-

cance quite similar to that of ANEC in semiclassical gravity. 1 will make this
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argulnent  by discussing in turn the im~llications  of gcncralizcd  ANT1’X for pos-

itivity of total rmcrgy,  for singularity theorems, and for the cxistcucc  of static
traversable worrnholc solutions to the serniclassica]  Einstein cqllatious

Posztzvzty  of total  mcrgrj- Recall the arg[imcnt  in Ref. [1] leading to the
‘1’heore]n  in Sect. 1 thmc.  Inst,ead of a ~~b satisf~ ing AN](;C in t~lc simple  for[rl

l;q. (3) of [1], consider a quantum stress-energy tensor (w l~~b IL”) which satisfies

generalized ANI~C in the form

along all complete null geodesics ~ in (M, g) [assume, in other words, that
(u [7h~l@) is integrable along each complete y and satisfies l;q. (3) al)ovc]. Con-

sider a Cauchy  surface X and a subregion S C X as in [I], allcl I[lodify tile
~ssunl~)tion  (Al) in Sect. 1 of [I] to:

(.,\ 1 ) For each fixed Hadalnard  state w, let the subregion S C X IIC chosen large

enough such that generalized ANEC [Eq. (7)] holds for (w[7~blw)  along all null
generators of the future horizon 11+ (S).

Assume also that the assumption (A2) holds as drscribed  in [I]. ‘1’hen, using ex-

actly  the same arguments as in the proof of the Ttleorern  irl Sect. 1 of [1] [between

Eqs. (6) and (10) there], it follows that either the total energy co~lt aiued in S,

~s(~[~:*lw)’’”~tbd3a, is nonnegative, or, if this total energy is negative, then

it is bounded from below by a lower bound which depends 011 w only weakly

through the choice of S. More precisely, it follows that

where the supremum  on the right hand side is c,ver all time furlctic)ns a which

satisfy (for some constants ~, g > O) the conditions of assunllltion  (A2), and
the integral inside the Sups is over all null generators of tile horizon 11+ (S),

evaluated with respect to the unique “solid angle’’ -measure dzfl on the set of
generators such that d2!d dv = d3a [wl~ere v is the affl~le paralnetm along the

generators, and d3a is the canonical volume e]er)lent  of H+ (s)]. Consequently,
just as ANEC  places a positivity constraint on the integrated energy density

under appropriate assrrlnptions,  so also generalimd  ANEC  places, under similar

assumptions, an essentially state-independent (in general negative) lower bound
on the same quantity. (Note that in general tllc quantum state w detervnincs
exactly how “large” tbc region S C X needs to be chosen, and this is the only
reaso]l the lower bound might depend OIL w.)

Singuiarify  theorems--- To illustrate the relevance of generalized ANEC
for singularity theorems and other global resul{s  of classical (;eneral  Relativ-

ity, recall the Proposition proved in Sect. 2 of [2], which uscs the constraint
on the Ricci tensor imposed by ANEC and the Einstein equations to demon-

strate a focusing lemma for null geodesics; a res~llt  of the kind whic]l  constitute

4



ihc kcy ingrcdirmt  in the proof of global results such as singularity theorems.
A straightforward reworking of the argument in the proof clrwcribrd in Ref. 2
[given  bctwccn  Eqs. (4) and (9) there] directly drvllonstratcs  t hc following vari-

ation of that l)ro~)ositioll:

l’roposztzon:  I,ct p be a point on a conll)lcte null geodesic y(v).  Assunlc that ~

satisfies t}le following property: For the s~)ecific choice of the weighting funct)ioli

c(x) [see the formulation Eq. (3) of generalized A .YIC above] givc]l by

c(x) = c](z) = (1 –X2)2, [$[ < 1 ,

c] (x) = 0, Izl>l, (9)

the weighted average of the Ricci tensor I&b a]or, g ~ obeys t]lc inequality

(lo)

wllcrc f?l (k) > —cm (and where v = O at p). [If generatizcd  A,NIC  (toget}lcr
with scmic.]assical Einstein’s equations) holds, tllcn with /31 ~ 47T/?C,  this con-
dition must hold in every lladamard state of the quantuln  field for at least one
dircctiou  along ~ from p.] Consider a null geodesic congruence containing -y
whose cxpausion  U(rJ) along -y satisfies, itritially  at the poitit  p, tile inequality

u(o) < /?I(k) (11)

(IIotc  that under a resealing of the affine para,,,etcr the ex~,a,,sior, O scales in
the same way as the tangent vector k, so this i~lequality is indeI)endent  of the
choice of affinc parameter). ‘1’hen, either @ vanishes idcutically  alorlg -y, or there

. .
cxist,s  a finite VO > 0 at wh]ch  llnlU_.vO .0(2))  == -cm.

‘1’hcrefore,  indcpendent]y  of which quantum state the field is in, generalized
ANIJC guarantees the refocusing of a null geodesic congruence if the initial  con-
vergence is sufficicut]y nonpositive,  or, in other \vords (assurnillg, ~1 < O), if the

initial convergence is more negative than  the amount of ANEC violation allowed
by generalized ANEC.  As was also the case with ANEC (SCC the last paragraph
on p. 405 of Ref. [2]), a proof can also probably be given that if generalized

AN](2C holds along a complete null geodesic -y, and if y satisfies the null generic
condition such that t}~e maximum magnitude of the quantity kckbk[C&]ah[ekJ]
(which enters the formulation of the generic condition) is sufficiently large conl-
pared to the lnagnitude  of ANEC violation allowed by generalized ANEC [cf.

l;q. (] 1 )], then y must contain a pair of conjugate points.

7kavcrwable wormholes. - A widely applicable generalized ANEC theo-
rem would place a sigrlificant a priori COnStraillt  on possible solutions to the

semiclassical Einstein equations. Namely, assurrle  that such a theorem- to the

effect that generalized ANEC holds along (cert sin) colnplete  null geodesics y
in every asymptotically empty spacetilne,  with a geometric, state-independent

lower bound /3Y---werc available. Then, given auy spacetimc  (M, g), one could
compute for each specified y c M the quantity @.r in the geonletry  of (M, g), and

compare the result with the ANEC integral of the Einstein tensor .@~h a]ong

the  sarnc null geodesic. If the comparison fails to satisfy the gc~leralized  ANIC

5
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inequality [1’; q. (3)] for at least some ~, then thcm cannot, exist aIIy IIadarnard
[quantuln state which would lnake (M, g) a self-consistcut sclnic]assical  solutio]l
of the Iilistcin equations; in other words, the spacctilllc  (M, U) would be ruled
out, by quantum field tbcory  (at least  with the sp(cific quantulll  fields for which

a detailed analysis of the ANIC integrals can Ilc carried o~lt). A nice illus-
tratioll of these ideas is provided by static (sphclically  syllllllr-tric) traversable

wor)~lholc  sparctimcs. Sllch a wormbo]c IIas topology S2 
x IR2, and a ~netric of

the general form

~ ,: _e2’1’t~l dtz + d12 + r(l)2(dO:’ + sin 2 ~d~J2) , (12)

where the radial coordinate 1 ranges from -w (on one asy~]lljtotic region) to

+x- (on the other ). For tllerc  to bc no event horizons (hcncc for tllc wormholc
to be traversable), O needs to be finite everywhere. For asylllptotic  flatness, it
is necessary that as I -+ 4

where ro is the radius of
is the wormhole’s  Inass.

cm (more precisely, for Ill >> 7’0)

(13)

the wormholc’s “throat,” (wllcrc 1 varnishes), and M
Throughout lIIy discussion here 1 will assume  that

TO = 2Jf (which should be the case if as seen from infinity t}le wor~nhole is
indistinguishable from an astrophysical object); M a result, the class of wornl  -
holes 1 will consider is parametrized (essentially) by one variable: the worznholc

mass Af. l;or lnore details on wormholcs  scc the discussion in [6]; for a more
uI~-to-date account (including a discussion of tbf more recent \vork on ANT EC)
see [7]

‘1’be spacetimc  given by Eqs. (12  13) [wit])  everywhere regular @(i)] vio-
lates  AN EC along all its radial null geodesics: a straightforward computation
of the h;instcin tensor  followed by an integration by parts reveals that

(14)

along any radial null geodesic -y (note that the afline parameter t along ~ can be

chosen to be any positive constant times ~ e“ dl ; 1 will choose this constant to

be unity throughout so that dv = eq’ dl and k = e-2q’ d/& -t e-o 8/8/). Here
and in what follows a prime (’) denotes differentiation with rmpcct  to the radial
coordinate 1. Substituting Eq. (13) in the last integral of IIJC1.  (] 4) (and carrying
out the integration only over II] > 21Vf)  gives

v 67 1
%

384X M
(15)

Can this ANEC  violation V necessary to mainl  ain a traversab]c  wormhole  bc
supported by a quantum stress-energy tensor? Consider a lnassless  Klcin-
Gordoll  field on the wormhole  spacetimc  (the answer is riot likely to depend

significantly on the spin or internal structure of the field). Assume that gener-
alized ANEC holds alo~lg the radial null geodesi(s  of the worjnhole.  Whether or

not this assumption is true remains to be shown; however, the scaling argument
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sketched ahovc co~nbincd with the  known ANIX thcormlls  ([2])  ilI two and f o u r
dilncllsiolls  sllggest  that, it is likely to be true (n{~tc that tllc worlllholc)s radial

IIUI1 geodesics arc colopletc  ancl achr-onal).  Prclcccding with tile assulnption  that,
gcncralizcd  ANlIX3  holds, how can wc guess the form that the (finite) ANEC
lower bollnd ~(k)  is likely to take along the radial null geodesics of the worlullole

spat-cti]nc? One way to approach this question is to look closely at the scalilig
behavior of the worrnhc)lc  nletric  Eq. (12). in general, a scaling  g A ~zg of

Kq. (12) leads to a ncw worlllhole metric g = ~2g for which the tllctric functions

@ and r arc given by

where a har over asylnbo]  indicates that the corresponding quantity refers to the
scaled spacctimc  with nletric  g =: ~2g. Fronl Eq, (14) it follows quite generally

that V = K-] V, and from llq.  (13) it follows that PO = KTO  a~ld [consistent with
Kq. (1 5)] M = KA4. From the scaling argument 1 described above for a .gcneral
spacctime,  it follows that

where (] ‘}~ab  and ‘2)f{ab arc the conserved curvature terms given by Eqs. (5)

and (6), respectively. Computer algebra systems ([8]) make the con)putation  of
these higher  curvature terms easier: for the worlllho]e metric [Iq. (12)] 1 find

(])]]abk”kb  dv =
[

_$ ‘1’~ – (c-q’)’’@”  – 3 (r’c- @)’ .!::<

(
+ ~–o @//// -,- GW’ - $D” + ~@

r 1’

-t 39[1 -t (? ’’)2] + ::: – $;2 - 6;:(7”)~

(r’)3 ,

)1
$r’@’  +  4-F--@ -  2~(@’)2 dl , (18)

and

(’)lrabk”kb  du z
[

--2 l’D – 2 (e-@)”  0“ – 7 (r’c- a’)’ ~’~’

(~ ~–111  @//t +- 5;: 0’4’”  + $)’” + !:::@

2(r//)2  7

+  29[1 - t  2(r’)2] -  ~ - 6$(r’)2

+ 4$)~-@ – ~- ‘ “ d/ ,(0) ) ] (19)
r

where the symbols 11) denote total derivative tcJ m of the form dl’[~,  r]/dl with

liml-+fm  1’ =: O under the boundary conditions Eqs. (1 3). A calculation similar
to the derivation of Eq. (15) from Eq. (14) gives, when applied to Eqs. (18)- (19),

/

-1221 -t 20481 rl(2)  ~ d ~5_l__[l)JJabkokbdv  z -&–---—--M—3  —  N .  *{3 , (20)
-t
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al]d

J ‘2)}],, &’kb dv %
1 -28117+  47010 hI(2j ~ ~,78_l___—— ——.

2520 jvJ3 AT 3
(21)

-)

Now let I~(AJ) denote  tllc value of the quantity ~~(k) for a worl[lholc  spacctilllc

[I(;qs. (12) (]3)] of mass A4 (recall r{) ~ 2M). Nctc  that, for silil~)licity, 1 }]avc
hccll ignoring’ in this discussion tllc more accuratf version l’;qs.  (’2)- (3) of gener-

alized ANT I(X; more precisely, 1 have assumed (and will continue to assur]lc)  that,

for a gcllcral  weighting function c(x) it holds that ~C(k) =. [c(0)  ]z,.5(k). Conlbin-

ing Eqs. (20)- (21) with Eq. (17) and recalling thfit a - b w 10--4, 1 deduce the
relatio]l

lllK 10-4C
B(KM) =  &(mJ) -I X3 --jp- , (22)

where c is a nulncr-ical ccmstant with Icl w 1. It is reasonahlc  to guess (and this
is the only “guess ing’) illvolvccl  in the present argument) that 11~(1)[  = 1; i.e.,

that the value of B(A4) for a Planck-mass  (M -~ 1 ) wormhole is (in absolute

IIiagnitudc)  of order unity, that is, o f  ]’lanck size ( in Plallck units).  l’ben

lq. (22) gives

B ( M )  w -M% (cl + 10-4czln  M) , (23)

where c1 and C2 are constants with ICI I A \cz I N 1. Clearly, for reaso~lable  M the

second terln  in parenthesis in Eq. (23) is negligible compared tc, the first; hence
III(A1)[  w l/itf:3. In order to have the ANEC  violation V [Eq. ( ]5)] supportable

by the renorlnalizcd stress-energy tensor, it is necessary t hat B( VI ) < V, which
is only possible if 113(M)I > [VI, which ilnplies  A(

2 < C3) where C3 - 1. There-

fore, if<gencv-alized A AT1;G  J)olds, a quantum Klejrl- Gordon field can support the
A IV1;C violation necessary for a traversable worr]ihole  only if tl)e  wormhole  has

I’lanck  mass or less; in other words, all traversahlc  wormholcs except possibly
those of l’lanck size arc ruled out by quantum fitld theory.

It is important to keep in mind that this conclusion rests entirely on the

assulllption  that generalized ANEC holds along the radial null geodesics of the
wor~nho]e  spacetime.  If it can be shown that tile ANEC integral along these

geodesics is u~lbounded  from below as a functional of the quantum state, tbcn

no atnount  of ANEC violation can be ruled out  by quantum field theory; in
particular, there ]night  exist states in whit.b tile violation WI. (15) necessary
for a macroscopic traversable wormhole is supported by the expected quantum

stress-energy tensor. Even if generalized ANIZC could be showII  to hold by indi-
rect methods, a rigorous computation of the lower bound ~(k)  will be necessary

to demonstrate that it indeed has the I,ehavior  {Iescribcd in Eqs. (22)- (23). [It
is plausible tc) conjecture that if generalized ANEC  holds, then it can be put

in the form Eq. (4), with the “nlini~llllll~-ANEC. integral” state LJO being given
by the standard, isometry-invariant vacuum fc)r the wormllole rnctric.] Also,
my conclusion is based on the analysis of a simple one-para]ncter  family of

wortnholes;  the general criterion to decide which worrnhole metrics l;q. (12) are

allowed in semiclassical gravity is bound to be much IIlore  complicated. For
example, one could C11OOSC the functio~l r(i) to l)e very slowly varying so as to

~nake the integral in Eq. (14) as small (in absolute value) as the ]nicroscopic

8
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A N 1;(; violation  allowed by quantuln  field theory. It appears that a ll]acro-

scopic worlnholc  of this kind (with  extrelncly  s~llall radial curvature) could bc

allowed even when generalized ANEC holds; holtevcr, such a s~lacc~i!nc would

look lnorc  like a constant-radius S2 x LR2 univcrs~’ t}]an a worlnllolc joining two

asynlptotical]y  flat regions. Finally, although tllc main co~lclusic)l}  is a]~nost
certainly indepcnclcnt  of the spin and internal s~ructurc  of the sIJecific Klcin-

Gorclon field, t}lc argument above deals only with the questio)l of lnaintaining  a

wormholc  using free (non-interacting) quantum fi(:lds.  A ]Jlausible  configuration

for wormhole  maintenance based on the Casirnir  effect (wllerc  at) clcctrornag-

Ilctic field providing the negative Casirnir  energy interacts with tile rna{tcr fields
in the conducting plates  which trap it in the Casi~llir vacuuln  state) }vas outlined
in Ref. [6]. ‘1’o rule out macroscopic configurations of that sort, onc would need

a generalized ANIX thcorcln  applicable to interacting fields. Ncvertlicless,  it is
diflicult  to scc how interactions could induce a \iolatio~l  of gexl[’ralizcd A N II;C

if such a theorem holds generally in non-interacting quantunl field theory.

Sinlilar conclusions about the constraint irnposccl  by gcllcralizcd  ANII;C

on solutions of semiclassical Einstein equations can be reached for spacetirnes
more general than wc)rlnholcs. For exanlple,  in Ref. [9] it is s}tuwrl that when
the classical null energy condition holds, a region with non-trivial topological

structure cannot be visible from infinity in an asymptotically flat sl~acetinle.

Corllbinirlg the proof of this result with argrrrllcnts  similar tc) above, it can
be shown that if generalized ANEC holds alonr, cornplctc  null geodesics y in
an asymptotically flat spacetirne,  with a microscopic (i. e., proportional to h)
ANEC  lower  bound /37, then a norltrivial  topological  structure can be visil)lc

frorll infinity only if its spacctimc  curvature is of the Plauck  si~c.

‘1’he possibility that the scaling argurnerrt  of our earlier paI]cr  ([2]) may
not allow macroscopic violations of ANFC  while permitting nlicroscopic  viola-
tions was suggested to rne by R. Wald in Santa Barbara two years ago. ‘l’his

research was carried OUL at the Jet Propulsion laboratory, California Institute
of ‘1’ethnology, and was sponsored by the NASA Relativity Oflice and by the
National Research Cou~lcil  through an agreement with the National Aeronautics
and Space Administration.
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